

SWOBODA INTEGRATED CURRENT SENSOR FOR AUTOMOTIVE APPLICATIONS

The Swoboda integrated current sensor is suitable for inverter & battery applications.

INTRODUCTION

Current sensors are used in a wide variety of commercial, industrial and automotive applications..

The Swoboda Integrated Current Sensor is a galvanically isolated sensor that contains differential Hall sensing elements and an embedded copper busbar. It is optimized to measure high currents at high voltages (AC & DC), that are common in automotive inverter (AC phase currents & DC link) and high voltage battery applications. It is fully automotive qualified and complies with functional safety level up to ASIL-B.

FEATURES & BENEFITS

- Single-ended analog output
- Single supply voltage of 5 V
- Measurement of peak currents up to ±1500 A
- \blacksquare Also available with dedicated over current detection (OCD) output with a detection time of less than 1.7 μs
- Functional safety (ISO26262): ASIL-B
- Inherent immunity to external / stray magnetic fields due to differential measurement principle
- 30 % less weight compared to similar sensors
- High bandwidth / fast response time
- Built-in programming interface (via dedicated pin) for EOL calibration
- Fully automotive qualified

ADVANTAGES

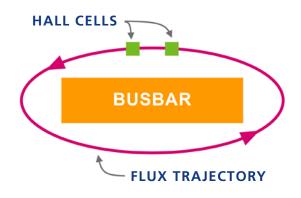
- Highly accurate measurement of AC & DC currents
- Significantly smaller footprint than conventional core-based current sensors
- Extremely low drift over temperature and lifetime
- High linearity due to coreless measurement principle
- Bandwidth of more than 60 kHz

APPLICATION AREAS

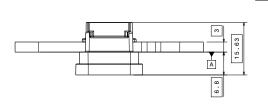
- Automotive main inverter
- Battery management system
- Electric motor drives
- General current monitoring

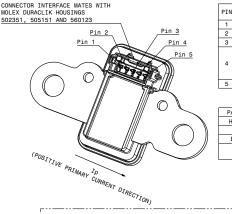
Any questions about this product? Please contact us: Sales Department Swoboda Schorndorf KG Telephone: +49 (0) 7181 7003-0 > sales.schorndorf@swoboda.com

© Swoboda 2024 www.swoboda.com/en/products-solutions

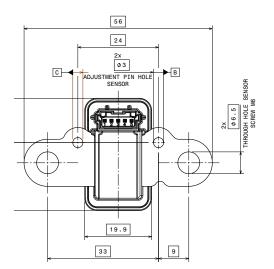

28.05.2024 / Version 1.0

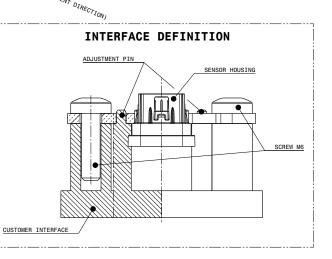
PRINCIPLE OF OPERATION


All current carrying conductors generate a magnetic field around them. Therefore, by measuring this flux density, the current flowing can be measured. The integrated current sensor consists of two hall cells separated by a gap of approximately 2.3 mm, as shown below. The difference between the flux densities measured by the two sensitive elements is filtered and amplified. Subsequently, an analog output voltage that is proportional to the measured flux density is given out. As this flux density is proportional to the current flowing, the chip measures the current flowing in the busbar. This system by inherent design offers the following advantages over traditional core based single ended sensors:


- Immunity to uniform stray magnetic flux densities because of the differential measurement principle.
- High linearity and negligible hysteresis due to the absence of a ferromagnetic core.

Hall cells in differential configuration, marked in green, along with thebusbar


DRAWING



PIN	PIN ASSIGN	DESCRIPTION	
1	V _{DD}	SUPPLY VOLTAGE	
2	A _{out}	ANALOG SIGNAL OUTPUT	
3	GND	GROUND	
4	NC	NOT CONNECTED (PRODUCT TYPE WITHOUT OCD)	
	OCD	OVER CURRENT DETECTION (PRODUCT TYPE WITH OCD)	
5	DCDI	PROGRAMMING	

PARTNAME	MATERIAL	PLATING
HOUSING	>PA66-GF30<	
COVER	>PA66-GF25<	
BUSBAR	>CU-ETP<	
PINS	>CuNi3Si1Mg<	Sn matte over Ni ductile

NOMINAL OPERATING CHARACTERISTICS

SIGNAL DESCRIPTION	UNITS	MIN.	NOM.	MAX.	REMARKS
Primary current, peak value	[A]	-1500	-	+1500	Lower range configurable. Max current is however
					limited by bus bar design and thermal conditions.
Ambient temperature	[°C]	-40	-	+125	
V _{DD}	[V]	4.5	5.0	5.5	Supply voltage
A _{OUT}	[V]	-0.3	-	V _{DD}	Analog signal output
OCD*	[V]	-0.3	-	V _{DD}	Overcurrent detection: open drain output
DCDI	[V]	-0.3	-	V _{DD}	DCDI communication interface: open drain I/O
I _{DD}	[mA]	-	21	25	Current consumption, $I_{Aout} = 0 \text{ mA}$
Load current	[mA]	-6.5	-	6.5	DC current
Comparitive tracking index (CTI)	[V]	600	-	-	
Creepage	[mm]	-	15.2	_	
Clearance	[mm]	-	9.3	_	
Life time	[years]	15	-	_	
Weight	[g]	-	28	_	
*Valid only for product type with OCD					

1 0 Gain [dB] 5--3 -4 10 0,1 1 100 Frequency [kHz] 20 0 -20 Phase [°] -40 -60 -80 -100 10 100 0,1 1 Frequency [kHz] 30 2,52 25 2,10 20 15 10 1,68 [SJ%] 1,26 [SH] 0,84] 1,68 0,42 ° 5 0,00 1200 0 -1200

Measured frequency plots of the integrated current sensor.

Estimated 3o error of the integrated current sensor after calibration, for a measurement range of \pm 1200 A

© Swoboda 2024 www.swoboda.com/en/products-solutions

-600

-400

-200

0

Current Measured [A]

200

400

600

-1000

-800

28.05.2024 / Version 1.0

1000

800

EMC PERFORMANCE

TEST	STANDARD	REMARKS
Conducted Emission (CE)	CISPR-25:2021	Voltage based
Radiated Emission (RE)	CISPR-25:2021	ALSE, Class 5, Upto 5925 MHz
Radiated Immunity (RI)	GMW3097:2015	ALSE, Level 2, 400 MHz to 2000 MHz
Bulk Current Injection (BCI)	GMW3097:2015	Level 2, CBCI and DBCI, Upto 400 MHz
ESD Handling (ESDH)	GMW3097:2015	\pm 4 kV at pins, upto \pm 8 kV on housing and busbar

ELECTRICAL PERFORMANCE

TEST	STANDARD	REMARKS
Bode Plot		20 A _{peak} , 0 to 100 kHz
Noise*		0 to 1 MHz
dv/dt		11 kV/μs, 50 Hz
di/dt*		150 A/µs, 500 A _{peak}
RMS voltage for AC insulation	IEC 60664-1	2.5 kVms AC, 50 Hz, 60 s, I < 0.1 mA
Insulation test	ISO 16750-2 (2010)	500 V, Ir ≥ 100 MΩ
*Tests in planning		

ENVIRONMENTAL PERFORMANCE

TEST	STANDARD	REMARKS
High temperature, high humidity	JESD 22-A101 (03/2009)	+85 °C / 85 % RH, Duration: 1000 h
Electrical connection		$U_c = 5 V, I = 0 A$, monitoring
Thermal cycles	IEC 60068-2-14 test Nb	T _{min} = -40 °C, T _{max} = +125 °C, t _{cycle} = 480 min/8 h,
		Number of cycles: 30, Duration total: 240 h
Thermal shocks	IEC 60068-2-14 test Na	Tmin = -40 °C, Tmax = +125 °C
		30 min @-40 °C/30 min @+125 °C
		Number of cycles: 500
		U_c not connected, $I = 0 A$
High temperature storage	IEC 600068-2-2	Temperature: +125 °C, Duration: 1000 h
		U_c not connected, $I = 0 A$
Low temperature storage	IEC 600068-2-1	Temperature: -40 °C, Duration: 240 h
		U_c not connected, $I = 0$ A
Mechanical Shock test	IEC 60068-2-27	Acceleration: 500 m/s2, Duration: 6 ms
		Number of shocks: 10 per test direction
		U_c not connected, $I = 0 A$
Random Vibration test	IEC 60068-2-6	Frequency: 10 to 2000 Hz, Acceleration: 9.7 g
		Duration: 3 axes x 22 h/axis / 66 h in total
		$U_c = 5 V$, $I = 100 A$, monitoring